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Extended Plasma Rotation 
Theory(ERT)?



▪ Plasma rotation theories developed by two main approaches

▪ Hirshman-Sigmar approach
▪ Hirshman and Sigmar, Nuclear Fusion 21 (1981)

▪ Most recent publication: Houlberg et al., 1998

▪ most famous with two (parallel/perpendicular) Momentum Balance 
Equations(MBE) to calculate neoclassical rotations of multi-ions and Er

▪ Stacey-Sigmar approach
▪ Stacey and Sigmar, Phys. Fluids 28, 2800(1985)

▪ Most recent publication: Bae et al., Nuclear Fusion 2013

▪ introduced as “Extended Plasma Rotation Theory”

▪ Decomposes MBE in three coordinates (radial, poloidal, toroidal)

▪ direct comparisons with Vt and Vp measurements possible

▪ Radial transport calculations in radial coordinates

▪ Others
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▪ Neoclassical plasma rotation codes

▪ NCLASS
▪ based on Hirshman-Sigmar approach

▪ Publication: Houlberg et al.,Phys. Plasmas, 4 (1997)

▪ calculate neoclassical rotations of multi-
ions

▪ Embedded in TRANSP

▪ GTROTA
▪ based on Stacey-Sigmar approach

▪ Publication: Bae et al., Comp. Phys. Comm. (2013)

▪ Uses D-shaped Miller flux surface geometry
▪ Miller et. al., Phys. of Plasmas, 5 (1998)

▪ calculates rotation velocities up to four ion 
species and electron

▪ A non-linear iteration code in Matlab

▪ Others
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▪ GTROTA major outputs
▪ Vt and Vp rotation velocities of 4 ion 

species and electron (previous slide)

▪ Radial velocity (Vr) and electric field 
(Er)

▪ All the torques in toroidal angular 
torque balance 

▪ Including viscous torques

▪ Poloidal in-out / up-down 
asymmetries

▪ in density, velocity, and 
electrostatic potential
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▪ Vt calculations with DIII-D, KSTAR, and EAST shots agree within 
15% of carbon or Ar measurements (CES and XICS 
measurements) for rho < 0.85



▪ Based on collisionality-extended Braginskii’s closure

▪ Meaning that it is based on Braginskii’s closure but extended for 
arbitrary collisionality
▪ Details in the next slide 

▪ Extension to Mikhailovski-Tsyin’s closure in progress [Plasma Phys 13, 

785 (1971)] 

▪ For better accuracy in the edge Rotation Study (rho 0.85 to 1.0) 
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▪ Collisionality-extended Braginskii’s viscosity representation

▪ Parallel viscosity coefficient extended to low collisionality (trapped 
particle effect) by Shaing

-> Calculations valid  for arbitrary collisionality
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▪ Retains all the terms in Toroidal and Poloidal MBE
▪ Except vanishing ones due to equilibrium and axisymmetry (in grey)

▪ Includes Reynolds Stress terms (Convective and Atomic torques)

▪ Atomic term calculated with TRANSP

▪ No gyroviscous cancellation assumed

▪ Numerical model becomes extremely non-linear
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▪ applies D-shaped flux surface geometry using Miller model [Miller 

et. al., Phys. of Plasmas, 5 (1998)] with Shafranov shifts

▪ Flux surface averages (FSAs) and geometric scale factors(h’s) for Miller 
geometry

▪ Example: Er formula below shows FSAs and scale factors (h)
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▪ Includes first-order poloidal perturbations (poloidal asymmetries) 
in density, velocity, and electrostatic potential

▪ Represented with the 1st order Fourier series

▪ Sine function representing up-down asymmetry

▪ Cosine function representing in-out asymmetry

▪ Calculated asymmetries with Miller geometry published in two papers

▪ Bae et al., Nuclear Fusion 2013

▪ Bae et al., Phys of Plasmas, 2014

▪ A draft under review

▪ Georgia Tech Fusion Research Center has recently developed a code to 
calculate rotations with 10th order perturbations for accuracy 
▪ R. King, MS thesis, Georgia Institute of Technology, May 2019
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▪ Radial transport of all ion species calculated
▪ Er calculated self-consistently

▪ Calculation with Miller flux surfaces published in 2014

▪ Bae et al., Phys of Plasmas, 2014

▪ Difference in Er with Circular vs. Miller model published 

▪ Recent investigations on Vr and Radial flux 

of all ion species

▪ calculated non-self-consistently

▪ GTROTA updated to investigate these calculations

▪ Collaboration with other researches based on 

radial diffusivity coefficients (later slides)
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MAJOR DEVELOPMENTS

Future directions of ERT and GTROTA
(mostly for edge rotation study)

Advises/ideas/recommendations welcomed!



▪ Extension of ERT to Mikhailovskii-Tsypin’s closure
▪ Include Heat Equation

▪ Important for edge rotation/transport study 

• Viscosity evolution equation:

• Heat flow evolution equation:

➢ This development in progress (2016 - ongoing)

• 1ST order Fourier expansion of temperature being applied

• This is next in line for the future development of ERT and GTROTA

• doable within a few years to finalize the numerical model and implement 
it in GTROTA
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▪ To add more edge physics including intrinsic rotation

▪ Intrinsic co-current deuterium rotation due to Ion Orbit Loss (IOL)
▪ Stacey, Phys of Plasmas 25, 122506 (2018)

▪ The predominant IOL of CTR-current ions leaves a predominantly CO-
current edge intrinsic rotation

▪ This effort shouldn’t take long but will need to add other edge rotation 
mechanisms for higher accuracy

▪ Ideas/suggestions welcomed
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▪ Develop an NTV theory based on Stacey-Sigmar approach
▪ By considering non-axisymmetry in the formalism

▪ General non-axisymmetric formalism published: Stacey and Bae, PoP (2015)
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▪ Dedicated presentation slides in Appendix A



▪ Develop an NTV theory based on Stacey-Sigmar approach
▪ Next step is to develop a numerical model for GTROTA

▪ Question is on how to best represent magnetic perturbations

▪ Up to the 4th order Fourier series being considered but still contemplating

▪ Ideas being formulated from my experimental experiences at KSTAR

▪ as a team member for the ELM suppression investigation using RMP 
coils at KSTAR

▪ Publication: Jayhyun Kim et al., Nucl. Fusion 57, 022001 (2017)
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▪ Investigate the converging order of poloidal asymmetries
▪ Georgia Tech Fusion Research Center has calculated rotations with 

poloidal asymmetries up to 10th order
▪ Publication: R. King, MS thesis, Georgia Institute of Technology

▪ A separate set of codes written with Mathematica and Fortran

▪ Could be a verification opportunity on which order is accurate enough

▪ This investigation of the appropriate converging order may take long

▪ Two track development approaches with GTROTA

▪ Accuracy version (with higher order poloidal asymmetries)

▪ Plasma control version (for near-real-time calculations of all species)

▪ This will have to be collaboration with PCS developers
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Ongoing Researches

• Publication plans
• Researches under investigation/collaboration

❖ Please note that any research topics discussed in this 
talk can be considered as collaboration opportunities 

for others. 



▪ Theory verification with DIII-D deuterium velocity 
measurements in L-mode (2013-2015)
▪ First test opportunity of the theory against deuterium measurements

▪ Deuterium measurement became available from Dr. Brian Grierson

▪ Below: DIII-D 145180 (1220ms)         

▪ Interesting findings on poloidal variation of toroidal velocities

▪ Similar experimental findings with ECEI rotation images

analyzed by G.S. Yoon at POSTECH

Toroidal velocities (D and C)                             Toroidal velocity asymmetries (D and C) at rho=0.8
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▪ EAST and KSTAR H- and L-mode shot analyses (2015-2017)
▪ Goal was to analyze more L-mode shots and upgrade GTROTA capability to 

calculate rotations with RF heatings

▪ EAST shots with LHCD and ICRF shots

▪ KSTAR L-mode shots

▪ Analyses finalized

▪ Need to extend GTROTA features to add HFS-LFS plotting option

▪ Planning to publish with new features available in GTROTA
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▪ Theoretical investigation of Gyroviscous cancellation validity in 
Tokama plasmas (2014-2015)
▪ The well-known gyroviscous cancellation in sheared slab geometry [Plasma 

Physics 4, 1766 (1992)] has been investigated 

▪ using a systematic perturbative method 

▪ based on the Mikhailovskii-Tsypin's closure relation

▪ on the large gyrofrequency ordering for flowing plasmas

▪ 1st order surviving terms (in colors):
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▪ Collisionality effects on rotation and transport
▪ Motivated by too many assumptions applied in plasma researches

▪ ERT retains all terms in the MBE (both toroidal and poloidal coordinates)

▪ This research is to holistically understand collisionality effects
▪ within a discharge: collisionality regimes change and differ for different species

▪ among different discharges: Different discharges have different regime distributions

▪ Q: Can I investigate collisionality effects on various shots and find any 
consistency on rotation/transport?

▪ Will require analyses of many discharges to answer this question

Researches under Investigation/Collaboration 23

▪ KSTAR discharge #5505 (2500ms)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

-4

10
-2

10
0

10
2

10
4

10
6

rho

Normalized collisionality

 

 

Nu
D
*

Nu
C
*

Nu
Ar

*

Nu
T
*

Plateau region

Banana region

Pfisch-Schluter
region

0.2 0.3 0.4 0.5 0.6 0.7

-10

-8

-6

-4

-2

0

2

4

6

8

10

rho

Deuterium torques

 

 

NBI torque to D

NTV

Convective

Electric

Friction

Atomic

Anomalous



▪ Collisionality effects on rotation and transport
▪ However, I can provide my rotation/transport calculations to others so 

that they can identify right assumptions based on the collisionality and 
apply appropriate theories

▪ Calculations in toroidal angular torques are available in GTROTA

▪ Plan to do the same code upgrade for poloidal torque balance in the future
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• A coupled study of ion species rotation and transport 
▪ Motivation is to compare radial transport (Vr and flux) calculations from 

GTROTA to other calculations based on diffusivity coefficients

▪ Collaboration with KAIST team on Ar transport study (2015 – 2017)

▪ with density gradient: introduces “Diffusion coefficient (D)”

▪ with convective effect: introduces “Convective coefficient (V)”

▪ KSTAR experiments with Ar injection 

▪ Analyses delayed due to the temperature measurement accuracy

▪ A dedicated conference slides in Appendix B
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▪ A coupled study of ion species rotation and transport 
▪ Motivation: to understand heavy ion (W, Ar, or Ne) transport

▪ Findings

• Toroidal torque balance different for different ion species

• Radial fluxes of different ion species can be opposite

• Probably due to different collisionality regime distributions

▪ This research effort is in preliminary stage and need some guidance
• A dedicated talk slides in Appendix B
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▪ Theoretical improvement of ERT for the edge rotation study will 
continue

▪ Computational code development will continue

▪ Publications to follow to report the progress and findings to the 
plasma physics community

▪ Any questions or collaboration discussions can be emailed to my 
permanent email below
▪ yuri157@gmail.com

▪Thank you for your attention!

▪Questions and Answers
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Thank you for your attention!

my permanent contact: yuri157@gmail.com
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APPENDIX A:
GENERALIZED VISCOUS EFFECTS FOR

NON-AXISYMMETRIC TOKAMAK PLASMAS

Cheonho Bae
cbae@nfri.re.kr

National Fusion Research Institute, Daejeon, South Korea

January 2017

KSTAR conference, Muju resort, South Korea
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1. NEOCLASSICAL VISCOUS TORQUES

2. WHERE AM I TODAY?

3. WHERE AM I GOING NEXT?

4. WHAT CAN THIS WORK DO FOR US?

5. QUESTIONS/DISCUSSIONS

Contents
30



▪ Viscous forces in tokamak coordinates
▪ Toroidal and poloidal momentum balance equations

▪ Viscosity evolution equation

▪ Braginskii’s viscosity representation

where

NEOCLASSICAL VISCOUS TORQUES 31
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▪ What do I mean by “Generalized Viscous Effects”?
▪ Neoclassical Toroidal Viscous (NTV) torque

▪ Neoclassical Poloidal Viscous (NPV) torque

▪ Generalized viscous effects

▪ Work out NTV and NPV torques in non-axisymmetric plasmas
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▪ Flux Surface Averaged NTV torque in non-axisymmetric plasmas
33
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▪ Axisymmetric NTV and NPV torques calculated in GTROTA
▪ NTV represented with gyroviscosity / Braginskii’s closure

❖ Two neoclassical codes that handle gyroviscosity: GTROTA / NEO

▪ GTROTA based on collisionality-extended Braginskii’s viscosity
▪ Parallel viscosity coefficient extended to low collisionality (trapped particle effect) by Shaing

-> valid  for arbitrary collisionality
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35
▪ GTROTA considers first-order poloidal asymmetries in density, velocity, and 

electrostatic potential
▪ Rotation calculations with KSTAR #5505-2500ms (H-mode with NBI) 

[Bae et al., PoP 21, 012504(2014)]

▪ No non-axisymmetric magnetic perturbation in this shot
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• Generalize to non-axisymmetric NTV and NPV torques
▪ Theoretical study published [Stacey and Bae, PoP 2015]

▪ Theoretical model development for GTROTA in progress

▪ Extend to Mikhailovskii-Tsypin’s closure

▪ need Heat Flux Density Evolution Equation

WHERE AM I GOING NEXT?
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▪ Rotation and transport predictions of deuterium for non-
axisymmetric plasmas
▪ Generalized viscous contribution to rotation and transport

▪ Increase accuracy in Er calculation

KSTAR #5505

WHAT CAN THIS WORK DO FOR US? 37
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Thank you for your attention!
Questions/Comments
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APPENDIX B:
A COUPLED STUDY OF

PLASMA ROTATION AND TRANSPORT
: COMPARISON OF TOROIDAL TORQUE CONTRIBUTIONS

IN AXISYMMETRIC TOKAMAK PLASMAS

Cheonho Bae1,2,*, Jayhyun Kim1, Minjun J Choi1, Laurent Terzolo1,  Tongnyeol
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▪ Practical questions!!!
1. How are the rotation & transport differ 

for different ion species?

• considering their collisionalities differ 
significantly 

2. Can we predict deuterium rotation & 
transport from the impurity 
measurements?

• Most transport studies done with 
impurities

3. Which physical term(s) in the angular 
momentum(or torque) balance equation 
have the largest contributions to rotation 
& transport?

40

▪KSTAR discharge #5505 (2500ms)
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▪ A coupled study of plasma rotation & transport to answer these questions!



▪ Most common “particle (or flux)” transport study of today

▪ is based on the continuity equation

▪ closes this equation with approximated physical effects

▪ with density gradient: introduces “Diffusion coefficient (D)”

▪ with convective effect: introduces “Convective coefficient (V)”

▪ We use this model to study individual ion transport

▪ by injecting a specific impurities (Ar, Ne, W, etc.)

▪ measure fluxes to determine D, V, and effective Vr

▪ require dedicated injection systems and diagnostics

▪ but still study transport of only one impurity

▪ Q: can’t we just solve the momentum balance equation(MBE) to get Vr?

▪ as we do in plasma rotation study
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▪ Plasma rotation study solves MBE to get velocities (mostly Vt and Vp)

▪ if Vr can also be calculated, two studies can be coupled

▪ Plasma rotation theories are developed by two main approaches

▪ NCLASS (based on Hirshman-Sigmar approach) [Houlberg et. al., 1998]

▪ most famous with two (parallel and perpendicular) MBEs to calculate 
neoclassical rotations of multi-ions

▪ but no further development to couple it with particle/heat transport

▪ GTROTA (based on Stacey-Sigmar approach) [Bae et. al., Comp. Phys. Comm. 2013]

▪ introduced as “Extended Plasma Rotation Theory (EPRT)” [Bae et. el., NF 2013]

▪ takes MBE in three coordinates (radial, poloidal, toroidal)

▪ direct comparison with Vt and Vp measurements possible

▪ Vr specifically appears in the toroidal torque balance (next slide)

▪ Q: can I extend EPRT/GTROTA to find Vr/radial fluxes for most generalized 
tokamak plasmas(both axisymmetric and non-axisymmetric)? 
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CURRENT STATUS OF EPRT/GTROTA
▪ Retains all the terms in the MBEs and in three coordinates

▪ Velocity calculation models for Vt and Vp

▪ Toroidal direction: toroidal torque balance (Flux Surface Averaged) 

▪ Vr appears in this equation => Effective Vr (later slide)

▪ Poloidal direction: poloidal torque balance (Flux Surface Averaged) 

▪ Radial direction: radial MBE

▪ Provides coupling relations with the continuity equation

▪ Used to calculate 1st order poloidal variations (aka poloidal asymmetries)

▪ in density, velocity, and electrostatic potential [Bae et. Al., PoP 2014]
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CURRENT STATUS OF EPRT/GTROTA
▪ Other EPRT/GTROTA features

▪ Uses Miller flux surface geometry 

▪ for higher accuracy in velocities(Vt, Vp, Vr), momentum/particle transport, 
and Er calculations

▪ All plasma parameters (Vt, Vp, Vr, Er, etc.) self-consistently iterated

▪ Maximizes the advantages of plasma fluid equations

▪ Calculates Er, Vt, Vp, Vr, and poloidal asymmetries of up to four ion 
species & electron

▪ Simulation of multi-ion plasmas possible (eg., D-T plasma with Tungsten)
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CURRENT STATUS OF EPRT/GTROTA
• Current GTROTA handles axisymmetric plasmas only

– Non-axisymmetric theory available [Stacey and Bae, PoP 2015] but not in GTROTA

• Today, calculated Effective Vr in axisymmetric plasmas

– defined to represent all anomalous terms (2nd order and higher / turbulence 
inclusive)

– Assuming most anomalous transports are in radial direction
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DISCHARGES ANALYZED

▪ Four KSTAR discharges analyzed
▪ Two H-modes with Ar rotation measured (#5505-2500ms / #5953-2500ms)

▪ Two L-modes with Carbon rotation measured (#13728-4500ms / 13728-4950ms)

▪One simulation with Tungsten
▪ Based on #5505-2500ms

▪KSTAR discharge #5505 (2500ms)
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ANALYSIS RESULTS

▪ Rotation, poloidal asymmetries, & Er (KSTAR #5505-2500ms)

▪ Vp and Vt of all ions/electrons calculated

▪ Vt very close to each other and stays within 10% of the measurement [Bae et. et., 
NF 2013 / Bae et. al., PoP 2014]

▪ Er self-consistently(iteratively) calculated 

▪ Poloidal asymmetries (of density, velocity, and electrostatic potential) 
calculated (density asymmetry only shown in this slide)
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TOROIDAL TORQUE COMPARISONS

▪ Toroidal torque densities
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• Findings
– torque balance mostly maintained by friction and 

anomalous (“Effective Vr cross B”)

• especially for the impurities

– Different balancing relations for different ion 
species

• Q: Is “collisionality” most dominant 
effect in the rotation and transport of 
different ion species?
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TOROIDAL TORQUE COMPARISONS
▪ Effective Vr / radial fluxes
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• Findings
– Effective Vr & radial fluxes larger for impurities

– Impurity fluxes in opposite directions

• Q: Do all the impurities always accumulate in the core?

• Q: What physical mechanism determines these directions? Collisionality?

▪KSTAR discharge #5505 (2500ms)



▪ Theoretical model development (in progress) 

▪ develop a separate Vr subsystem

▪ develop numerical models for non-axisymmetric plasmas [Stacey and Bae, PoP 2015]

▪ include 1st order toroidal variations (in Bt and others)

▪ Numerical code development

▪ Code in non-axisymmetric theories

▪ compare all the poloidal torque density terms

▪ Simulations/analysis of modern tokamaks

▪ Analyze KSTAR discharges with ITBs

▪ Various modes/devices: DIII-D, KSTAR, EAST, etc.

▪ W transport simulations

▪ ITER-relevant simulations (ITER shapes / D-T fusion / etc.)

▪ Collisionality effect simulations

▪ open to comments and ideas!
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Thank you for your attention!

Additional slides with more details…
1. Simulation with Tungsten

2. L-mode discharge analysis results
3. Extended Plasma Rotation theory

my permanent contact: yuri157@gmail.com
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APPENDIX C:
EXPERIMENTAL EXPERIENCES WITH KSTAR



▪ CPO/APO experiences [2013-1017]
▪ Served as CPO/APO for five consecutive KSTAR annual campaigns

▪ Develop CPO/APO training manual and checklist

▪ KSTAR campaign & PAC coordinator [2013-2014]

▪ Rotation/Transport study shots
▪ KSTAR shots with CES/XICS/ECEI diagnostics collected
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▪ H.H. Lee et al., Tearing modes induced by perpendicular electron cyclotron 

resonance heating in the KSTAR tokamak, Nucl. Fusion 54(2014), 103008

▪ Jayhyun Kim et al., Suppression of edge localized mode crashes by multi-

spectral non-axisymmetric fields in the KSTAR, Nucl. Fusion 57, 022001 (2017)

▪ Type-I ELM crash suppression reproduced both consistent and inconsistent 

suppression performances when compared to the DIII-D results

▪ indicates a dependency of ELM suppression on the heating level and the associated 

kink-like plasma responses

▪ dominant and malign kink-like plasma responses over the benign gap filling effects
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